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Abstract
The spin-statistics connection is obtained for a simple formulation of a classical
field theory containing even and odd Grassmann variables. To that end,
the construction of irreducible canonical realizations of the rotation group
corresponding to general causal fields is reviewed. The connection is obtained
by imposing local commutativity on the fields and exploiting the parity
operation to exchange spatial coordinates in the scalar product of classical
field evaluated at one spatial location with the same field evaluated at a distinct
location. The spin-statistics connection for irreducible canonical realizations
of the Poincaré group of spin j is obtained in the form: classical fields and
their conjugate momenta satisfy fundamental field-theoretic Poisson bracket
relations for 2j even and fundamental Poisson antibracket relations for 2j odd.

PACS numbers: 03.30+p, 03.50.−z

1. Introduction

Few would dispute that the field concept has been one of the happiest conceptual innovations
in the history of physics. From its nineteenth-century origins in the work of Faraday and
Maxwell to modern theories of fluid physics, the classical theory of elastic solids, relativistic
gravitation, or of quantum field theory, the notion of a physical quantity which takes on values
throughout a plenum has proven to be protean and endlessly fruitful. Consider the success of
the very prototype of a field theory, classical electrodynamics, in describing the propagation
of electromagnetic radiation, in identifying that radiation with light, and in accounting for the
transport of electromagnetic energy by light with the Poynting vector. Imagine the difficulty
of describing any of these phenomena without the aid of electromagnetic fields. Nor is the
future development of quantum-mechanical descriptions of nature likely to abandon the field
concept: whatever form a final theory of physics takes, whether cast in terms strings or branes,
or other entities, ‘effective’ quantum field theories valid at low energies—the definition of
‘low’ varying, as occasion demands—will remain indispensable aids to practical calculation.

This paper presents a proof of the connection between spin and statistics for classical
Grassmann fields. An earlier paper [1] presented a classical analogue of the spin-statistics
connection for pseudomechanics, a version of analytical dynamics containing even and odd
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Grassmann variables [2–7]. The method of proof relies on the canonical formalism for fields,
suitably extended to include odd Grassmann variables. Classical field theory is readily cast
in terms of the canonical formalism [8–10], most familiarly as part of many an introductory
account of quantum field theory [11, 12]. (But see [13, 14] for a different account of the
foundations of quantum field theory.) The literature on canonical formulations of classical
field theory, studied in their own right, is too large and various for a capsule summary. A
sampler of this body of research may be gleaned from reviews in [15–18]. On the other hand,
apart from investigations inspired by supersymmetry [19, 20], classical treatments of odd
Grassmann fields do not appear to be common. Examples may be found in papers by Gozzi
et al [21] and Floreanini and Jackiw [22].

We begin by extending the canonical formalism for fields to classical Grassmann
variables. The classical equivalent of fermionic exchange symmetry appears in the properties
of anticommuting Grassmann variables. The construction of irreducible canonical realizations
for massive fields possessing definite intrinsic spin, starting from the Lie algebra of the Poincaré
group, is outlined next. Irreducible canonical realizations of the Poincaré group are classified
in the same manner as irreducible unitary representations in quantum field theory. Canonical
equivalents exist for the elements of the theory of unitary representations in a Hilbert space,
including ladder and Casimir operators. Of particular importance for the present problem,
the canonical space inversion (or parity) operation P̂ and its action are defined. Finally,
the spin-statistics connection is obtained by using the parity operation to exchange spatial
coordinates in the scalar product of a field evaluated at one spacetime location with the same
field, evaluated at a distinct spacetime location lying at spacelike interval from the first.

Local Poincaré symmetry contributes three elements to the proof: (1) local commutativity,
(2) the properties of the rotational subgroup, specifically the properties of irreducible canonical
realizations of spin degrees of freedom and (3) the action of the discrete symmetry of parity
transformation P̂ . As in other proofs of the spin-statistics connection, invocation of Poincaré
symmetry furnishes a sufficient condition for the connection. Its necessity is addressed in
section 6.

Lower case Greek letters denote either even or odd Grassmann fields, unless otherwise
indicated in the text. When it is desirable to distinguish even fields, they will be labelled by
Latin letters of either case. Lower case Latin letters are also used for coordinates of spacetime
locations; x ≡ (x, t) distinguishes space and time coordinates once a spacelike foliation has
been established. Except when serving for spin degrees of freedom, lower case Greek indices
run from 0 to 3, while lower case Latin indices run from 1 to 3. The summation convention
applies to repeated indices, unless the summation sign is explicitly shown for emphasis. When
required for notational compactness, the partial derivative of ψα with respect to xµ is written
as

ψα,µ ≡ ∂ψα

∂xµ
. (1)

2. Classical Grassmann fields

The commutation properties of Grassmann variables permit the realization of fermionic
and bosonic exchange symmetry in a classical setting [1, 23, 24]. The familiar c-number
bosonic variables of traditional classical physics are even Grassmann variables. Odd classical
Grassmann variables anticommute in a form of the exclusion principle. A set of n odd real
Grassmann fields obeys the anticommutation relations

ξµ(x)ξν(y) + ξν(y)ξµ(x) = 0. (µ, ν � n). (2)
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It follows that

ξ 2
µ(x) = 0. (3)

One even and one odd variable, in either order, commute. Differentiation on Grassmann
variables can act from the right or the left. The sign of the derivative of a product, for example,
can depend on which derivative is taken. Left differentiation, in accord with the convention
in [23], is used exclusively in the following.

The formalism for analytical dynamics of Grassmann variables, developed by Casalbuoni,
Pauri, Prosperi and Loinger, that found use in [1] can largely be translated directly into field-
theoretic language [9, 10, 17, 25]. Canonical transformations, for example, are defined in a
manner that corresponds closely to analytical dynamics, as automorphisms of the fields that
preserve Poisson brackets. The necessary alterations to the definition of Poisson brackets for
fields are given below. The discussion will be limited to unconstrained systems for simplicity.

Fields are taken to be (Poincaré-symmetric) elements of the Hilbert space of complex
square-integrable functions. The canonical realizations of the Poincaré group to be described
below form invariant subspaces of the Hilbert space. Fields are assumed to be ‘massive,’
so that it makes sense to speak of a rest frame for them, i.e., a frame in which the spatial
components of the four-momentum density vanish1. The support of the fields is taken to be a
large region of Minkowski spacetime R with boundary ∂R on which normal gradients of the
fields vanish. Let qi(x

µ), i = 1, . . . , m, be even field variables, and ξα(xµ), α = 1, . . . , n, be
odd field variables. Given a Lagrangian

L = L

(
qi, ξα,

∂qi

∂xµ
,

∂ξα

∂xµ

)
, (4)

define the Lagrangian density by

L =
∫

d3x L
(

qi, ξα,
∂qi

∂xµ
,

∂ξα

∂xµ

)
. (5)

The Euler–Lagrange equation for a field ψ is

δL

δψ
= 0 (6)

with
δL

δψ
≡ ∂L

∂ψ
− ∂

∂xµ

∂L
∂ψ,µ

(7)

for ψ even or odd. Generalized momenta are defined by

pi = δL

δqi,0
πα = δL

δξα,0
. (8)

The Hamiltonian is given by

H =
∫

d3xH (9)

with

H ≡ qi,0p
i + ξα,0π

α − L, (10)

and Hamilton’s equations are

qi,0 = δH

δpi
pi

,0 = −δH

δqi

(11)

1 This condition is presumably not necessary for the existence of a spin-statistics connection for a classical field, but
it greatly simplifies any discussion of the effects of space inversion.



13340 J A Morgan

ξα,0 = − δH

δπα
πα

,0 = −δH

δξα

. (12)

By the way of introducing the Poisson bracket for Grassmann fields, let

F =
∫

d3x F(qi, qi,k, ξα, ξα,k, p
i, πα) (13)

be an even functional and consider its total rate of change

dF

dt
=

∫
d3x

∂F
∂t

+
∫

d3x

{
∂F
∂qi

qi,0 +
∂F
∂qi,k

qi,k0

+
∂F
∂pi

pi
,0 + ξσ,0

∂F
∂ξσ

+ ξσ,k0
∂F
∂ξσ,k

+ πσ
,0

∂F
∂πσ

}
. (14)

A standard calculation, [26] modified as needed for the odd variables, gives

dF

dt
=

∫
d3x

∂F
∂t

+
∫

d3x

{
δF

δqi

δH

δpi
− δF

δpi

δH

δqi

− δH

δπα

δF

δξα

− δH

δξα

δF

δπα

}
. (15)

Rearranging (15) gives the template for the Poisson bracket for two even functionals of the
field variables [2, 3]:

[F,G] =
∫

d3x

{
δF

δqi

δG

δpi
− δG

δqi

δF

δpi

}
+

∫
d3x

{
δF

δξα

δG

δπα
− δG

δξα

δF

δπα

}

= −[G,F ]. (16)

As in [2], the definition of the remaining brackets is fixed by requiring that multiplication of
fields by an odd Grassmann constant gives an algebra over the ring of Grassmann fields. The
bracket of two odd functionals θ and ψ is given by

[θ, ψ] =
∫

d3x

{
δθ

δqi

δψ

δpi
+

δψ

δqi

δθ

δpi

}
−

∫
d3x

{
δθ

δξα

δψ

δπα
+

δψ

δξα

δθ

δπα

}

= [ψ, θ ] (17)

and is called an antibracket. When it is desired to emphasize the difference between brackets of
two even variables and antibrackets, they will be written as [F,G]− and [θ, ψ]+, respectively.
For an odd and an even functional

[θ, F ] =
∫

d3x

{
δθ

δqi

δF

δpi
− δF

δqi

δθ

δpi

}
−

∫
d3x

{ δθ

δξα

δF

δπα
+

δF

δξα

δθ

δπα

}
. (18)

The bracket between an even and an odd functional is defined so that

[F, θ ] = −[θ, F ]. (19)

Casalbuoni [2] has shown that the set of Poisson brackets and antibrackets in pseudomechanics
comprises a graded Lie algebra [27, 28]. The development just given recapitulates that
construction in terms of field-theoretic brackets. Let ςf = 0 for an even field and ςφ = 1 for
odd. The corresponding generalization of the Jacobi identity, [2, 3, 27–29]

(−1)ςπ ςγ [γ, [ρ, π ]] + (−1)ςγ ςρ [ρ, [π, γ ]] + (−1)ςρςπ [π, [γ, ρ]] = 0, (20)

required for the construction of canonical angular momentum ladder operators in section 3.2
is cumbersome to prove using elementary methods. Given the validity of (20) in
psuedomechanics, its validity for classical fields follows from results obtained by Kupershmidt
in a treatment of classical fields possessing Hamiltonian structure, using a geometric
formulation of the calculus of variations [19, 20, 25]. Jacobi identities for classical fields are
not guaranteed to vanish under all circumstances. However, the identities do vanish modulo
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a trivial divergence, whose contribution in the present discussion vanishes upon integration
over R, by virtue of the assumption that all gradients vanish on ∂R.

Fundamental Poisson brackets may be computed by making the substitution [30]

ξ(x, t) =
∫

d3z ξ(z, t)δ(z − x), (21)

allowing one to regard ξ formally as a functional for the purpose of permitting differentiation
under the integral sign. For two even fields we find

[qµ(t, x), qν(t, y)]− = [pµ(t, x), pν(t, y)]− = 0. (22)

The bracket between a field and its corresponding canonical momentum is computed with the
aid of the identity [31]

δ(x − y) =
∫

d3z δ(x − z)δ(z − y), (23)

leading to

[qµ(t, x), pν(t, y)]− = δ(x − y)δν
µ. (24)

For odd fields and momenta

[ξµ(t, x), ξν(t, y)]+ = [πµ(t, x), πν(t, y)]+ = 0 (25)

and

[ξµ(t, x), πν(t, y)]+ = −δ(x − y)δν
µ. (26)

3. Irreducible canonical realizations of the Poincaré group

The classical model of a field used in this paper is the canonical field-theoretic counterpart of
an irreducible representation of the Poincaré group used to describe a particle in quantum field
theory [32, 33]. Instead of commutation relations amongst matrix generators of infinitesimal
Lorentz transformations and rotations, one manipulates Poisson brackets relating infinitesimal
generators of canonical transformations. Likewise, a functional on phase space which depends
solely upon the generators of the Lie algebra and which is an invariant in all realizations of the
Lie group is called a Casimir invariant, or simply a Casimir. Casimirs serve as the canonical
equivalents of quantum-mechanical Casimir operators.

Pauri and Prosperi [34] developed the theory of canonical realizations of Lie groups and
later presented the canonical realization of the Poincaré group in detail [35] (vide also [36]).
Morgan [1] gives the extension of that analysis to canonical realizations in pseudomechanics.
Classical fields of the simple kind considered in this paper satisfy Poisson bracket relations
identical to those for generalized coordinates and momenta in pseudomechanics. Insofar
as the development in [35] depends only on algebraic relations of generators of canonical
transformations and Poisson brackets, the results of that analysis can be translated into the
corresponding field-theoretic results.

3.1. The Poincaré group

The realization of the Poincaré group in particle mechanics as a set of canonical transformations
is presented in [1]. The corresponding development for fields is broadly analogous. The effect
of a general inhomogeneous Lorentz transformation (�, a) on a 4-vector xµ is

x ′µ = �µ
αxα + aµ. (27)
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If such a transformation is given a unitary representation (of any tensorial rank), the matrices
D of the representation satisfy

D(�2, a2)D(�1, a1) = D(�2�1, a2 + �2a1). (28)

Sufficiently near to the origin,

�µ
α = δµ

α + ωµ
α + O(ω2) (29)

aµ = εµ, (30)

with |ω| and |ε| � 1. The quantity ω is antisymmetric in its indices. To first order, a
representation of (29) and (30) is

D(1 + ω, ε) = 1 + 1
2ωµνMµν − ερPρ, (31)

where for each pair (µ, ν) Mµν = −Mνµ is a matrix generator of generalized rotations and
Pµ is a matrix generator of translations.

The commutation relations relating M and P comprise the Lie algebra of the Poincaré
group [33, 36–38]. In classical field theory, one may exploit the matrix representation directly
as in quantum field theory, or one may regard the commutation relations of the generators
as determining Lie bracket relations for an abstract representation of the Poincaré group.
We follow the latter path here and obtain a canonical realization by replacing Lie brackets
with Poisson brackets for the generators M and P of infinitesimal canonical transformations
corresponding to M and P , as described in [1].

The ten generators of infinitesimal transformations for the Poincaré group can be sorted
into one temporal translation, three spatial translations, three boosts and three rotations
[33, 35, 36, 38]. Of these, only the generators of rotations and boosts,

Ji = εijkMjk Ki = Mi0 (i, j, k = 1–3), (32)

with commutators

JiJj − JjJi = εijkJk (33)

KiKj − KjKi = −εijkJk (34)

JiKj − KjJi = εijkKk (35)

play a role in the subsequent development.
A field-theoretical realization of the Poincaré algebra can be constructed in more than one

way2; for illustrative purposes consider generators of canonical transformations derived from
irreducible representations of the Poincaré group that are bilinear in the fields and canonical
momenta [39, 40]. Given a matrix generator Gµ(x,∇x) of infinitesimal transformations for an
irreducible representation of the Poincaré group, one may obtain a canonical generator Gµ in
the form

Gµ =
∫

d3x(piGµqi − παGµξα). (36)

As in pseudomechanics, the canonical realization of the Poincaré group possesses no nontrivial
neutral elements. The Poisson bracket relations of the canonical realization are thus identical
to those of the Lie algebra. The canonical generators obtained by inserting (35) into (36)

2 Finite-dimensional irreducible realizations of the Poincaré group can possess field components which do not possess
conjugate momenta and which are not independent of other components, vide [10], pp 495–6. Since these additional
components do not satisfy fundamental Poisson brackets, they are of no concern in the present connection.
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satisfy the relations

[Ji, Jj ]− = εijkJk (37)

[Ki,Kj ]− = −εijkJk (38)

[Ji,Kj ]− = εijkKk. (39)

The realization of the Poincaré group so obtained consists of real generators.
The effect of an infinitesimal canonical transformation induced by a Lorentz

transformation is given by

δξµ = δαρ[Gρ, ξµ] (40)

δπµ = δαρ[Gρ, π
µ], (41)

where Gρ is one of the Lorentz generators and the constants δαρ are the Lorentz transformation
parameters. The effect of a finite transformation on a field is given formally by exponentiating
the action of (40) [41]:

ξ ′
µ(x ′

ν) = exp(αρ[Gρ, . . .])ξµ(xλ). (42)

In the case of an irreducible realization, the result may also be expressed as

ξ ′
µ(x ′

ν) = Dρ
µ(�)ξρ

(
�λ

νxλ + aν

)
, (43)

where the matrix Dρ
µ(�) belongs to the corresponding irreducible representation of the Lorentz

group [42].

3.2. Angular momentum and irreducible canonical realizations

The behaviour under rotations of a field that transforms as an irreducible canonical realization
with a definite angular momentum closely resembles that of a corresponding quantum-
mechanical system. Canonical angular momentum variables satisfy bracket relations that
form a subalgebra of the Poincaré algebra decoupled from the boost degrees of freedom. As
a result, the spin degrees of freedom of a massive field in its rest frame are treated in the same
way as in nonrelativistic quantum mechanics.

Suppose that a field is an irreducible canonical realization possessing definite angular
momentum. Fix the direction of the z-axis along its spatial part and write ξ for the magnitude.
The change in the value of ξ induced by an infinitesimal rotation about z is

ξ(x) ⇒ ξ(x) + δφ[ξ, Jz]. (44)

If ξ has rotational symmetry about the axis defining φ, the effect of this transformation must
be equivalent to multiplication by a phase

ξ ⇒ ξ + imδφξ, (45)

or

[Jz, ξ ] = −imξ. (46)

One may regard this relation as a kind of eigenvector condition and label ξ by its eigenvalue
m as ξm [43]. The angular momentum ladder operators

J± = Jx ± iJy, (47)
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satisfy

[J+, J−]− = −2iJz (48)

[Jz, J±]− = ∓J±. (49)

The quantity

J 2 = J 2
x + J 2

y + J 2
z = J 2

z + 1
2 [J+J− + J−J+] (50)

has vanishing brackets with all the generators of rotations in an irreducible realization. It is
thus a Casimir which, in any irreducible canonical realization, is a constant [44], so that

[J 2, ξm] = constant ξm ≡ j (j + 1)ξm. (51)

Irreducible realizations ξm for definite m are thus more properly labelled by both eigenvalues
j and m as ξjm.

The z-projection of the angular momentum of [J±, ξjm] is obtained by computing
[Jz, [J±, ξjm]] with the aid of the Jacobi identity (20) and the bracket relations of the ladder
operators from (49),

[Jz, [J±, ξjm]] = −i(m ± 1)[J±, ξjm]. (52)

Continuing in this way, we may obtain the action of the ladder operators in the canonical
formalism just as in quantum mechanics. In particular [43],

[J±, ξjm] = −i
√

(j ∓ m)(j ± m + 1)ξjm±1. (53)

It follows [43, 45, 46] that, as in quantum mechanics, realizations of integral and half-
integral j occur. The eigenvectors of Jz given by (46) have integer or half-integer eigenvalues
−j � m � j and span a (2j + 1)-dimensional invariant subspace of the Hilbert space
of canonical realizations of the rotation subgroup. In what follows, ξjm will be treated
collectively as components of an irreducible spherical tensor of rank j .

3.3. Classification of irreducible realizations of the Poincaré group

Irreducible canonical realizations of the Poincaré group may be classified in a manner entirely
analogous to the method used in quantum field theory. Construct infinitesimal generators from
the quantities defined in (37)–(39):

A = 1
2 (J + iK) (54)

and

B = 1
2 (J − iK). (55)

These satisfy the bracket relations

[Ai,Aj ]− = εijkAk, [Bi, Bj ]− = εijkBk, [Ai, Bj ]− = 0. (56)

The first two of these are identical to the Poisson brackets for J. The ladder operator formalism
developed in the preceding section therefore may be used to generate the components of an
irreducible canonical realization in exactly the same way that a complete set of m values is
generated for spin j . The irreducible canonical realizations are classified by a pair of indices
(a, b), both of which may be either integral or half-integral. Generators A3 and B3 act on
irreducible canonical realizations ξ

(a,b)
kl according to[

A3, ξ
(a,b)
kl

] = −ikξ
(a,b)
kl (57)
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and [
B3, ξ

(a,b)
kl

] = −ilξ (a,b)
kl , (58)

where the eigenvalues

k = −a,−a + 1, . . . , +a (59)

and

l = −b,−b + 1, . . . , +b. (60)

A ladder operator for A is given by[
A1 ± iA2, ξ

(a,b)
kl

] = −i
√

(a ∓ k)(a ± k + 1)ξ
(a,b)
k±1,l (61)

and similarly for B.
Canonical realizations with a definite spin j are constructed from combinations of the

(a, b) realizations. Thus, for example, a scalar field belongs to the (0, 0) irreducible realization,
while the Dirac field belongs to the

(
1
2 , 0

) ⊕ (
0, 1

2

)
realization. Each such realization

spans a (2a + 1)(2b + 1) subspace of the Hilbert space of irreducible canonical realizations.
Realizations with integral j are sometimes called tensorial, and those with half-integral j ,
spinorial [38]. Writing

Ji = Ai + Bi, (62)

we see that J3 will have eigenvalue m ≡ k + l and J 2 will have eigenvalue j (j + 1) where
j = a +b. Following Weinberg [47], an element of the (a, b) irreducible canonical realization
is called a general causal field. In the following, once (a, b) is fixed, the field ξ will be written

ξjm ≡ ξ
(a,b)
kl (63)

with

j = a + b m = k + l (64)

or simply

ξm ≡ ξjm (65)

unless it is necessary to specify the exact realization under discussion.

4. Parity and classical fields

4.1. Canonical realizations of the parity operation

The preceding section treated the effect of continuous coordinate transformations upon
classical Grassmann fields required for the proof of the spin-statistics connection. A complete
realization of the Poincaré group also includes the discrete transformations of parity, time
reversal and charge conjugation. Classical analogues of charge conjugation and time reversal
are discussed in [1]. The action of parity on a scalar function ξ of spacetime location x, t is

P(ξ(x, t)) = ηξ(−x, t). (66)

P commutes with the generators of time translations and rotations, but anticommutes
with the generators of spatial translations and boosts. Pauri and Prosperi [35] show that the
operator P̂ that realizes P in a canonical realization of the Poincaré group has the action

P̂ (J) = J (67)

and

P̂ (K) = −K (68)
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on the generator of infinitesimal canonical transformations for rotations and boosts,
respectively. Equations (67) and (68) are to be understood as shorthand for relations of
the form

[P̂ (Q), ξ ] = ±[Q, ξ ],∀ξ. (69)

In particular (vide also (98) below), the action of P̂ is diagonal on components of a field of
definite spin in a spherical tensor basis, allowing us to write

P̂ (ξm(x)) = ηξm(x ′), (70)

where

x′ = −x t ′ = t. (71)

Because P̂ 2 = 1,

η2 = 1, (72)

η = ±1 (73)

for any field.
In quantum mechanics, the parity of a state is a multiplicative quantum number. The

classical statement of this property to be used in section 5 is that the parity of the scalar
product of two fields is the product of the parities of the individual fields. Start with the
observation that a scalar function of position has even parity under space inversion. A scalar
is unchanged by any transformation of reference frame [48]. If one expresses a scalar field
ξ(r) in terms of a new coordinate frame r′′ as ξ ′′(r′′) [49],

ξ ′′(r′′) = ξ(r). (74)

Fix a common origin for both r and r′′. The frame r′′ is assumed to differ from r by a rotation
defined by Euler angles α, β, γ . Denote the action of the rotation that carries r to r′′ by the
rotation operator D(1)(αβγ ) and that which carries ξ to ξ ′′ by D(0)(αβγ ):

r′′ = D(1)(αβγ )r (75)

and

ξ ′′ = D(0)(αβγ )ξ. (76)

The rotation operator D(0)(αβγ ) for a scalar is simply unity. By (74) we thus have

ξ(D(1)(αβγ )r) = ξ(r) (77)

for any rotation α, β, γ . Once an origin has been fixed, the value of ξ does not depend upon
the orientation of the coordinate axes. Accordingly, ξ can depend only upon the magnitude of
r:

ξ(r) = ξ(|r|). (78)

In particular,

ξ(−r) = ξ(r). (79)

The parity of a scalar field is thus η = +1.
Next, the scalar product of two fields with the same rank is given by [50]

ξ · ζ =
∑
m

(−1)mξmζ−m. (80)
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Equation (80) is proportional to the expression for the coupling of ξ and ζ to spin zero [51],
i.e., a scalar function of position. Consider the effect of the parity operation on the scalar
product in (80),

P̂ (ξ(x) · ζ(x)) = ηξζ ξ(x ′) · ζ(x ′). (81)

With the aid of (70) and (73), this may be written as

ηξζ P̂ (ξ(x) · ζ(x)) = ηξηζ P̂ (ξ(x)) · P̂ (ζ(x)). (82)

The only choice consistent with a nonvanishing scalar product is readily seen to be

P̂ (ξ(x) · ζ(x)) = P̂ (ξ(x)) · P̂ (ζ(x)) (83)

and

ηξζ = ηξηζ . (84)

4.2. Parity and general canonical realizations of the Poincaré group

Consider next the effect of space inversion on the generators A and B of (54) and (55). Recall
from (67) and (68) that under the parity operation the generator of rotations is even, and that
of boosts is odd, with the result

P̂ (A) = B, P̂ (B) = A. (85)

Making use of the identity

P̂ ([ξ, ζ ]) = [P̂ (ξ), P̂ (ζ )], (86)

which follows from the definition of a canonical transformation and the action of parity
[35, 52], apply the parity operation to (61) to obtain [53]

P̂
([

A±, ξ
(a,b)
kl

]) = −i
√

(a ∓ k)(a ± k + 1)P̂
(
ξ

(a,b)
k±1,l

)
(87)

= [
P̂ (A±), P̂

(
ξ

(a,b)
kl

)]
(88)

= [
B±, P̂

(
ξ

(a,b)
kl

)]
. (89)

By the same reasoning[
A±, P̂

(
ξ

(a,b)
kl

)] = −i
√

(b ∓ k)(b ± k + 1)P̂
(
ξ

(a,b)
k,l±1

)
(90)

From (87)–(90) we conclude

P̂
(
ξ

(a,b)
kl (x, t)

) ∝ ξ
(b,a)
lk (−x, t). (91)

Set j = a + b and write

P̂
(
ξ

(a,b)
kl (x, t)

) ≡ ηkl�(j, a, b)ξ
(b,a)
lk (−x, t) (92)

with

η2
kl�

2(j, a, b) = 1. (93)

Then

P̂
([

A±, ξ
(a,b)
kl

]) = −i
√

(a ∓ k)(a ± k + 1)ηk±1l�(j, a, b)ξ
(b,a)
lk±1 (−x, t) (94)

= [
B±, ηkl�(j, a, b)ξ

(b,a)
lk (−x, t)

]
(95)

= −i
√

(a ∓ k)(a ± k + 1)ηkl�(j, a, b)ξ
(b,a)
lk±1 (−x, t). (96)
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Divide out common terms in (94) and (96) to obtain

ηk±1l = ηkl (97)

and likewise upon exchanging A and B in the foregoing,

ηkl±1 = ηkl ≡ η. (98)

As before, P̂ 2 ≡ 1 allows us to write η2 = 1, so

P̂
(
ξ

(a,b)
kl (x, t)

) ≡ η�(j, a, b)ξ
(b,a)
lk (−x, t). (99)

Although we make no use of it, the choice of � consistent with conventions for general causal
fields in quantum field theory [54] is

�(j, a, b) = (−1)(a+b−j). (100)

5. Connection between spin and statistics

Before attacking the case of general causal fields, the method of proof is worked out for the
simpler case of (j, 0) representations [13]. Define the (Weinberg) field

ξm ≡ ξ
(j,0)

m0 , (101)

where m runs from −j to j . It will be shown that imposing local commutativity on components
of a field ξm(x, t) leads to the spin-statistics connection [55].

The central element of the proof relies on the scalar product of a certain field evaluated
at one spacetime location with the same field, evaluated at a point lying at spacelike interval
from the first. A Lorentz frame exists in which the two points occur at equal time. The fields
may therefore be written as ξ(y + x, t) and ξ(y, t), and the scalar product as

ξ(y + x, t) · ξ(y, t). (102)

By translational invariance, this must be identical with

ξ(x, t) · ξ(0, t) = ξ(x/2, t) · ξ(−x/2, t), (103)

which we write as

ξ(x, t) · ξ(−x, t) (104)

from here on. While this object can be regarded as a purely formal device, it is closely related
to a quantity which finds use elsewhere is classical physics, the correlation function. The
spatial autocorrelation of ξ ,

g(x, t) = 〈ξ(y + x, t)ξ(y, t)〉, (105)

is of great significance in theories of statistical fluctuations [56, 57]. The angle brackets
denote a spatial average over y. While correlation functions find more use in classical
statistical mechanics, where they are used to describe the relation between fluctuations in
particle occupation number at distinct points in (say) an ideal gas, correlation functions appear
in continuum physics as well, most notably in the theory of interference of electromagnetic
fields [58, 59], but also in descriptions of phenomena as diverse as intensity interferometry in
radio and optical astronomy [60], pressure fluctuations in fluid mechanics [61], fluctuation–
dissipation relations in acoustics and electromagnetism [62, 63] and critical opalescence [64].
Tensor correlation functions also find use in the study of anisotropy and polarization of the
cosmic microwave background [65].

Commence by disposing of the possibility that the quantity

ξ(x, t) · ξ(−x, t) (106)
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might vanish identically for nontrivial fields. We do so by constructing a field for which (106)
may be seen to be nonvanishing. From the scalar product of fields ψ and φ of the same rank
form

(ψ, φ) ≡ 1

2j + 1

∫
d3x ψ∗(x, t) · φ(x, t). (107)

Equation (107) defines an inner product on the Hilbert space of complex square-integrable
functions on a spacelike slice of R: (1) (ψ + η, φ) = (ψ, φ) + (η, φ) (2) (aψ, bφ) is linear in b
and antilinear in a. (3) (ψ, φ)∗ = (φ,ψ) (4) (ψ,ψ) � 0 and (ψ,ψ) vanishes iff ψ does. We
may see this last as follows. In

(ψ,ψ) = 1

2j + 1

∫
d3x ψ∗(x, t) · ψ(x, t), (108)

we may expand the angular dependence of ψ in normal modes. The spin-weighted spherical
harmonicssYjm generalize ordinary spherical harmonics to arbitrary (to include half-integral)
eigenvalues of dimensionless angular momentum [66–68]. The spin-weight s is the negative
of a dimensionless helicity [69]. An irreducible realization ψ of spin j appearing in the
integrand of equation (108) may be written as

ψm(r,�) = fj (r)sYjm(�) (109)

at radius r for some value of s. Because the canonical ladder operators that raise and lower m
and s act on angular degrees of freedom only, the radial weight can have no dependence upon
either m or s [70]. The harmonics satisfy

sY
∗
jm = (−1)(s+m)

s Yjm (110)

and ∫
d�sY

∗
jm′ sYjm = δm′m. (111)

It therefore may be arranged that

(ψ,ψ) =
∫

r2 drf ∗
j (r)fj (r) � 0. (112)

(One must watch the order of factors if ψ is odd.) In particular, if ψ ·ψ∗ = ψ∗ ·ψ = 0 almost
everywhere, then (ψ,ψ) = 0. But (ψ,ψ) = 0 iff ψ = 0 a.e.

Assume ζ is a nonvanishing field belonging to a spin j irreducible canonical realization.
From ζ form

ξm(x, t) = ζ ∗
m(x, t) ± ζm(−x, t). (113)

We have

ξ(x, t) · ξ(−x, t) = ±ξ(x, t) · ξ ∗(x, t). (114)

As a general rule, the field ξ will have nonvanishing norm and the RHS of (114) will differ
from zero. But suppose that for one choice of sign in (113), ξ were to vanish ∀x. In that
event ξ , and hence (114), cannot vanish for the other choice. We suppose in what follows
that the appropriate choice of sign has been made, if necessary, and that (106) is therefore
nonvanishing on some open set of x.

The effect of P̂ on the scalar product of ξ(x, t) and ξ(−x, t) is, according to (99) for
a = b = 0,

P̂ (ξ(x, t) · ξ(−x, t)) = P̂ (ξ(x, t)) · P̂ (ξ(−x, t))

= ξ(−x, t) · ξ(x, t). (115)
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This quantity is the product of two terms with the same parity and by (84) is even parity itself.
Considered as a function of x, an even parity scalar obeys P̂ (f (x)) = f (x), thus we have

ξ(x, t) · ξ(−x, t) = ξ(−x, t) · ξ(x, t). (116)

Commutation relations of a causal field (− for Bose, + for Fermi) vanish outside the light
cone:

ξm(x, t)ξn(−x, t) ± ξn(−x, t)ξm(x, t) = 0. (117)

By (80)

ξ(−x, t) · ξ(x, t) = ±
∑
m

(−1)mξ−m(x, t)ξm(−x, t), (118)

for Bose (+) or Fermi (−) fields, respectively. Invert the order of summation by replacing m
with −m′:

ξ(−x, t) · ξ(x, t) = ±
∑
m′

(−1)−m′
ξm′(x, t)ξ−m′(−x, t). (119)

Now, j + m′ is always an integer and 2j + 2m′ an even integer. We may write

(−1)−m′ = (−1)−m′
(−1)2j+2m′

= (−1)2j (−1)m
′

(120)

in (119) to obtain for (116)

ξ(x, t) · ξ(−x, t) = ±(−1)2j ξ(x, t) · ξ(−x, t), (121)

or

1 = ±(−1)2j . (122)

Equation (122) is a statement of the connection between spin and statistics.
The extension of the argument just given to the case of the general (a, b) representation

is straightforward. The field ξ
(ab)
kl now carries two indices −a � k � a and −b � l � b, and

(80) is replaced with an expression that couples two (a, b) spherical tensors to a (0, 0) scalar,
in a generalization of Racah’s [51] original derivation of (80). That expression now becomes
(retaining the dot product notation)
∑
kl

(
a a 0

−k k 0

) (
b b 0
−l l 0

)
ξ

(a,b)
kl (−x, t)ξ

(a,b)
−k−l(x, t)

∝
∑
kl

(−1)mξ
(a,b)
kl (−x, t)ξ

(a,b)
−k−l(x, t) ≡ ξ(−x, t) · ξ(x, t), (123)

where m = k + l and the objects in parentheses are Wigner 3j symbols. It is readily shown that
(83) and (84) are valid for the generalized scalar product, and that (123) vanishes iff ξ(x, t)

does. By (99) for the (0,0) realization, the result of applying P̂ to (123) once again gives (116).
Both the spin j and summation index m are half-integral iff one of a and b is half-integral.
Therefore, (121) and thus (122) hold for the general (a, b) realization, as well.

We conclude classical fields which are irreducible canonical realizations of spin j must be
commuting, even Grassmann variables if j is an integer, and anticommuting, odd Grassmann
variables if j is half-integral. From the symmetry properties of brackets given earlier follows
immediately the conclusion that irreducible canonical realizations for integral j obey Poisson
bracket relations, while realizations for half-integral j obey Poisson antibracket relations. If
πµ is the momentum conjugate to ξµ, then the brackets are

[ξµ(t, x), ξν(t, y)]− = [πµ(t, x), πν(t, y)]− = 0 (124)

[ξµ(t, x), πν(t, y)]− = δ(x − y)δν
µ (125)
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for 2j = even, and

[ξµ(t, x), ξν(t, y)]+ = [πµ(t, x), πν(t, y)]+ = 0 (126)

[ξµ(t, x), πν(t, y)]+ = −δ(x − y)δν
µ (127)

for 2j = odd.

6. Comments

The result just proven may appear somewhat remote from typical problems encountered in
applications of classical field theory. For one thing, fields in classical physics are generally
constrained systems [25]. For another, if we except the special cases of the electromagnetic and
gravitational fields, problems in classical physics involving canonical realizations of a definite,
but otherwise arbitrary, value of dimensionless angular momentum should be uncommon. The
connection might better be stated: fields described by tensorial canonical realizations obey
fundamental Poisson bracket relations, while fields described by spinorial realizations obey
fundamental Poisson antibracket relations.

While the approach taken in this paper is Poincaré invariant, the treatment is not manifestly
covariant, in that it singles out spacelike slices. This difficulty is a familiar one in Hamiltonian
treatments of problems with relativistic symmetry. It appears that the method of proof used in
this paper could be cast in nonrelativistic language without a major change. The main difficulty
would appear to be replicating the classification of irreducible realizations for general fields.
For the special case of the classification of bound states of the hydrogen atom, it is possible
to recapitulate the construction in section 3.3 in nonrelativistic terms by substituting the Lenz
vector for the boost generator K, [71] but this method is not available in general. It hardly
seems necessary, however, to replicate every detail of the structure of irreducible realizations
of the Poincaré group in a nonrelativistic treatment, so long as the rotation group is realized
faithfully. The distinguished role of spacelike slices in the canonical formalism naturally poses
no difficulty in a nonrelativistic setting.

However, it must be questioned whether such a ‘nonrelativistic’ proof could really
be considered satisfactory. Elements of the present demonstration, such as equal-time
commutativity of fields, the effect of space inversion, and rotational symmetry, that all follow
from the single requirement of Poincaré invariance, would evidently enter a nonrelativistic
version of the proof as distinct hypotheses. This hardly seems parsimonious. Moreover,
it has been argued in a critique of proofs of the spin-statistics connection in nonrelativistic
quantum mechanics that no nonrelativistic analogue of local commutativity exists [72]. Even
if this objection be set aside, it does not seem that any real advantage is to be gained from a
nonrelativistic formulation.

7. Conclusion

Simple arguments based upon a field-theoretical canonical treatment of rotational and space-
inversion symmetry lead to a proof of the spin-statistics connection for classical Grassman
fields which are irreducible canonical realizations of the Poincaré group.
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